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Plan of lectures

• 1 15.04.2015 Preliminary Discussion / Introduction

• 2 22.04.2015 Experiments (discovery of the positron, formation of antihydrogen, ...)
• 3 29.04.2015 Experiments (Lamb shift, hyperfine structure, quasimolecules and MO spectra)
• 4 06.05.2015 Theory (from Schrödinger to Dirac equation, solutions with negative energy)
• 5 13.05.2015 Theory (bound-state solutions of Dirac equation, quantum numbers)
• 6 20.05.2015 Theory (bound-state Dirac wavefunctions, QED corrections)

• 7 27.05.2015 Experiment (photoionization, radiative recombination, ATI, HHG...)
• 8 03.06.2015 Theory (description of the light-matter interaction)
• 9 10.06.2015 Experiment (Kamiokande, cancer therapy, ….)
• 10 17.06.2015 Theory (interaction of charged particles with matter)

• 11 24.06.2015 Experiment (Auger decay, dielectronic recombination, double ionization)
• 12 01.06.2015 Theory (interelectronic interactions, extension of Dirac (and Schrödinger) theory for the

description of many-electron systems, approximate methods)

• 13 08.07.2015 Experiment (Atomic physics PNC experiments (Cs,...), heavy ion PV research)

Many-electron ions

(Independent particle model and central field approximation) 

01 July 2015
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Plan of lecture

From one- to two-electron ions (atoms)

Symmetry properties of the two-electron wavefunctio ns

Independent particle model (IPM)

Corrections to IPM: Screening and coupling

Central field approximation

From two- to many-electron ions (atoms)

01 July 2015

Solutions for one-electron ions

01 July 2015

Erwin Schrödinger Paul Dirac

H-like ion
(one electron)
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Schrödinger equation (a.u.):

(Bound-state) energy values:

Wavefunctions:

Dirac equation (a.u.):

(Bound-state) energy values:

Wavefunctions:
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Solutions for one-electron ions

01 July 2015

Erwin Schrödinger Paul Dirac
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Schrödinger equation (a.u.):

(Bound-state) energy values:

Wavefunctions:

Dirac equation (a.u.):

(Bound-state) energy values:

Wavefunctions:
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Note: both energies and wavefunctions are 
known for one-electron case analytically!

H-like ion
(one electron)

From one- to many-electron ions
(particular case of helium-like systems)

01 July 2015

(Stationary) Dirac equation for the two-electron io ns is given by:

Here the one-particle Hamiltonians (in atomic units ):

And the electron-electron interaction term:
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(for the moment we don’t consider relativistic corr ections to Coulomb interaction)
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From one- to many-electron ions
(particular case of helium-like systems)

01 July 2015

Our task now is to find solution for the two-electr on Dirac equation:

In other words: we have to find energy       and wa vefunction

First, let us discuss the general properties of the  solutions.
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Bad news: analytical solutions for this equation do  not exist!

We have to apply approximate methods!

Plan of lecture

From one- to two-electron ions (atoms)

Symmetry properties of the two-electron wavefunctio ns

Independent particle model (IPM)

Corrections to IPM: Screening and coupling

Central field approximation

From two- to many-electron ions (atoms)

01 July 2015
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Few-electron ions contain a number of electrons which are identical!

The Hamiltonian, therefore, must be symmetric with respect to any interchange
of the spin and space coordinates of the particle.

Thus an interchange operator commutes with the Hamiltonian :

As a result, solutions of Dirac equation are - at the same time – eigenfunctions
of permutation operator:

How to find eigenvalues ε?

Since two successive interchanges shall bring the system ba ck to the original
configuration:

Symmetry properties of many-electron wavefunctions

01 July 2015

[ ] 0ˆ,1̂2 =HP
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1±=ε

Symmetric wavefunction ( ε = 1)

( ) ( )2112 ,, rrrr Ψ=Ψ

Antisymmetric wavefunction ( ε = -1)

( ) ( )2112 ,, rrrr Ψ−=Ψ

Symmetrization postulate 

01 July 2015

To our present knowledge: all systems of identical particle s in nature could be
described by either totally symmetric or totally asymmetri c wavefunctions.

Bosons
(particles with zero or integer spin)

( ) ( )2112 ,, rrrr Ψ=Ψ

Fermions
(particles with half-integer spin)

( ) ( )2112 ,, rrrr Ψ−=Ψ

Bosons and fermions satisfy different kinds of stat istics!
(Statistics depends on spin!)

Let us briefly remember two types of statistics!



6

Bose-Einstein statistics
(just few words)

01 July 2015

To our present knowledge: all systems of identical particle s in nature could be
described by either totally symmetric or totally asymmetri c wavefunctions.

Bosons
(particles with zero or integer spin)
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Carriers of interaction ( γ, W, Z, g), complex 
particles with total spin J =0,1,2...

The Bose-Einstein distribution describes the
statistical behavior of integer spin particles
(bosons).

At low temperatures, an unlimited number of
bosons can collect into the same energy state, a
phenomenon called "condensation".
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Fermi-Dirac statistics
(just few words)

01 July 2015

To our present knowledge: all systems of identical particle s in nature could be
described by either totally symmetric or totally asymmetri c wavefunctions.

Fermions
(particles with half-integer spin)

( ) ( )2112 ,, rrrr Ψ−=Ψ

Leptons, quarks, complex particles with 
total spin J=1/2, 3/2, ...

Pauli exclusion principle!

Wolfgang Pauli

The Fermi-Dirac distribution applies to
fermions, particles with half-integer spin
which must obey the Pauli exclusion
principle.
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Symmetrization postulate 

01 July 2015

To our present knowledge: all systems of identical particle s in nature could be
described by either totally symmetric or totally asymmetri c wavefunctions.

Bosons
(particles with zero or integer spin)

( ) ( )2112 ,, rrrr Ψ=Ψ

P
ic

tu
re

 f
ro

m
: J

IL
A

, 
U

ni
ve

rs
ity

 o
f C

ol
or

ad
o,

 B
ou

ld
er

Carriers of interaction ( γ, W, Z, g), complex 
particles with total spin J =0,1,2...

Fermions
(particles with half-integer spin)

( ) ( )2112 ,, rrrr Ψ−=Ψ

Leptons, quarks, complex particles with 
total spin J=1/2, 3/2, ...

Pauli exclusion principle!

Wolfgang Pauli

01 July 2015

Note: matter constituents are fermions 
while force carriers are bosons!
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Back to the two-electron wavefunction

01 July 2015

To our present knowledge: all systems of identical particle s in nature could be
described by either totally symmetric or totally asymmetri c wavefunctions.

Fermions
(particles with half-integer spin)

( ) ( )2112 ,, rrrr Ψ−=Ψ

Leptons, quarks, complex particles with 
total spin J=1/2, 3/2, ...

Pauli exclusion principle!

Wolfgang Pauli

How to build wavefunction 
of helium-like ion?
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Let us build the two-electron wavefunction
in terms of one-electron ones:

Good! But does not fit to Pauli principle!

( ) )()(, 2121 rrrr ba ψψ=Ψ

|a>

|b>

Two-electron wavefunction
(symmetry structure)

01 July 2015

After discussing symmetry properties of the system of indis tinguishable
electrons (fermions) we may write down the two-electron wav efunction:

It is very convenient to express this function in terms of Sla ter determinant:
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(It is straightforward later to extend this expression for
describing 3-, 4- ... electron systems.)

John C. SlaterImportant question: what are the 
one-electron functions here?
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Two-electron wavefunction
(symmetry structure)

01 July 2015

After discussing symmetry properties of the system of indis tinguishable
electrons (fermions) we may write down the two-electron wav efunction:

It is very convenient to express this function in terms of Sla ter determinant:
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( )
)()(

)()(

2

1
,

22

11
21 rr

rr
rr

ba

ba

ψψ
ψψ

=Ψ

(It is straightforward later to extend this expression for
describing 3-, 4- ... electron systems.)

John C. SlaterImportant question: what are the 
one-electron functions here?

Please, note: by using Slater determinants it is st raightforward 
to construct N-electron antisymmetrized wavefunctio n:

( )

............

............

...)()()(

...)()()(

...)()()(

!

1
,..., 333

222

111

21 rrr

rrr

rrr

rr cba

cba

cba

N
ψψψ
ψψψ
ψψψ

=Ψ

Plan of lecture

From one- to two-electron ions (atoms)

Symmetry properties of the two-electron wavefunctio ns

Independent particle model (IPM)

Corrections to IPM: Screening and coupling

Central field approximation

From two- to many-electron ions (atoms)

01 July 2015
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Independent particle model

01 July 2015

Simple, but rather efficient approximation is just to take h ydrogenic orbitals as
one-particle wave functions:

The wavefunction in IPM is solution of two-electron Dirac eq uation while
neglecting electron-electron interaction:
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solutions of Dirac (Schrödinger) equation
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IPM can be applied for high-Z ions since the electron-
electron interaction scales like 1/Z when compared
with electron nucleus interaction.
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Independent particle model
(spectroscopy of levels)

01 July 2015

The wavefunction in IPM

is solution of two-electron Dirac equation while neglectin g electron-electron
interaction:

The energy of the (two-electron) ion:
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Within the Independent Particle Model the total
energy of the system is entirely determined by the
electron configuration!!!

For example, one may say that He-like ion can be in  the states: ,...22,21,1 2/12/12/12/1
2

2/1 sssss
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Independent particle model
(energy levels)

01 July 2015
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2
2/11s

2/12/1 21 ss

2/12/1 21 ps

2/32/1 21 ps

2/12/1 31 ss

singly-excited states

2
2/12s

………..………..

2/12/1 22 ps

2/32/1 22 ps

doubly-excited states

bbaa jnjn EEE +=

1s1/2 + “free” electron continuum

2s1/2 + “free” electron continuum

Independent particle model

01 July 2015

The wavefunction in IPM is solution of two-electron Dirac eq uation while
neglecting electron-electron interaction:

The energy of the (two-electron) ion:
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Ion IPM energy “exact” 
energy

H- -1 -0.528

He -4 -2.904

C4+ -36 -32.41

U90+ -9722 -9605

101 %

1 %nucleus
(point-like)
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Example: ground-state energy of He-like ions
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Independent particle model

01 July 2015

The wavefunction in IPM is solution of two-electron Dirac eq uation while
neglecting electron-electron interaction:

The energy of the (two-electron) ion:
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bbaa jnjn EEE +=

Ion IPM energy “exact” 
energy

H- -1 -0.528

He -4 -2.904

C4+ -36 -32.41

U90+ -9722 -9605

101 %

1 %nucleus
(point-like)
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Example: ground-state energy of He-like ions

Not bad (especially for heavy He-like ions)! But ca n 
we improve our simple model? 

Plan of lecture

From one- to two-electron ions (atoms)

Symmetry properties of the two-electron wavefunctio ns

Independent particle model (IPM)

Corrections to IPM: Screening and coupling

Central field approximation

From two- to many-electron ions (atoms)

01 July 2015
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Screening of nucleus

01 July 2015

In helium-like ions electrons screen nucleus from
each other!

Each electron already does not “see” the nuclear
charge Z but some smaller charge Zeff.

How to estimate “effective charge” Z eff?

We may consider nuclear charge as a parameter and apply varia tional principle:

By varying nuclear charge Z it was found (for non-relativistic systems):
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“effective charge” charge of the nucleus

Independent particle model
(taking screening into account)

01 July 2015

After taking screening into account, we obtain the wavefunc tion in IPM:

But where one-electron wavefunctions are solutions of Dira c equation:
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Ion IPM energy 
with Zeff

“exact” 
energy

H- -0.473 -0.528

He -2.84 -2.904

C4+ -32.36 -32.41

U90+ -9645 -9605

11 %

0.4 %

We end up with new energies:
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Are further improvements possible?
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Coupling of angular momenta

01 July 2015
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total angular momenta (and parities).

Atom (ion) is also characterized by the total angular moment um J .

To find this momentum we need to couple together individual electron momenta.

J

1j

2j

Please, remind yourself: we
coupled already orbital momentum l
and spin s to the total momentum j.
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Clebsch-Gordan coefficients

Normalization of many-electron wavefunctions
(coupled basis)

01 July 2015

We wish now to find normalization constant N for the wavefunction:

By assuming “standard” normalization condition for the bou nd-state wavefunction:

We obtain (by using properties of Clebsch-Gordan coefficie nts):
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In contrast to “uncoupled” basis it is not so strai ghtforward now with normalization!
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Independent particle model
(energy levels)

01 July 2015

E
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………..………..

0:1 2
2/1 =Js

1,0:21 2/12/1 =Jss
1,0:21 2/12/1 =Jps

2,1:21 2/32/1 =Jps

1,0:31 2/12/1 =Jss

singly-excited states

0:2 2
2/1 =Js

………..………..

1,0:22 2/12/1 =Jps

2,1:22 2/32/1 =Jps

doubly-excited states

bbaa jnjn EEE +=

1s1/2 + “free” electron continuum

2s1/2 + “free” electron continuum

Note degeneracy in 
total angular momentum J.

Coupling of angular momenta
(important comment)

01 July 2015

We have built two-electron wavefunction within the framewo rk of
Independent Particle Model:

But! Within the IPM individual angular momenta are still goo d quantum
numbers (since we “switched-off” interelectronic interac tion).

However, there are two important arguments pro making coupling here:
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1) IPM wavefunction is good starting point for building more “advanced”
wavefunctions.

2) “IPM with coupling” is very often enough for understandin g the physics of
various collision processes and basics of the structure of h eavy ions.
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Independent particle model: Summary

01 July 2015

We have built two-electron wavefunction within
the framework of Independent Particle Model:
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This simple model takes into account:

� Pauli principle (antisymmetrization)
� Momentum coupling
� Part of e-e interaction effects (screening)

Again: IPM is rather good approximation for analyzing many processes involving heavy ions.

But: electrons do not interact with each other directly!

Plan of lecture

From one- to two-electron ions (atoms)

Symmetry properties of the two-electron wavefunctio ns

Independent particle model (IPM)

Corrections to IPM: Screening and coupling

Central field approximation

From two- to many-electron ions (atoms)

01 July 2015
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Central field approximation
(derivation from “exact” Dirac equation)

01 July 2015
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Let us again start from the two-electron Dirac equation:

And re-write it in the form:
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new “unperturbed” Hamiltonian
(still sum of one-electron Hamiltonians)

perturbation
(chosen to be small)

0Ĥ Ĥ ′

By neglecting for the moment perturbation term         we may obtain solutions 
in the central field approximation:

Ĥ ′

central potential!

( ) ( )21210 ,,ˆ rrrr Ψ=Ψ EH

Central field approximation
(wavefunctions)

01 July 2015

Solutions of the new central field Hamiltonian:

Read again as:
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Please, note that u(r) functions are not anymore solutions of Dirac-
Coulomb equation but:

Since potential V(r) is central:
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But radial components (in general case) have to be found numerically!
(Depending on the particular form of central potent ial V(r) )
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Finding solutions for central field approximation

01 July 2015

Please, note that u(r) functions are not anymore solutions of Dirac-Coulomb
equation but:

Since potential V(r) is central:

Radial components can be found by numerical solution of the system of coupled
equations:
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Indeed, particular form of the radial components de pends on the choice of potential.

Choice of effective potential

01 July 2015

Indeed, there are many ways to choose effective (central) po tential in:

Quite often, people make use of the
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How to find “effective” nuclear charge?

One may, for example, apply Poisson's equation: πρ4−=∆V
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Central field approximation
(taking perturbation into account)

01 July 2015

We have “found” solutions of the new central field Hamiltoni an:

Which can be given in terms of Slater determinants:

In order to find solutions of “exact” Hamiltonian:

For relativistic ions (for which relativistic interaction s are stronger than
interelectronic ones) we may apply perturbation theory in o rder to take into
account!

( )∑ ++∇⋅−=
k

kk crVicH 0
2

0 )(ˆ αα

( ) ( )∑⋅=Ψ
ba bbbaaa

bbbaaa

J
jnjn

jnjn

JbbaaJM uu

uu
JMjjN

µµ µµ

µµµµ
)()(

)()(
,

22

11

21 rr

rr
rr

( ) ( ) ( )2121
12

0
2 ,,)(

1
)( rrrrα Ψ=Ψ































−−++++∇⋅−∑ ∑ E

r

Z
rV

r
crVic

k k k
kkk α
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Central field approximation
(taking perturbation into account)

01 July 2015

By making use of the first-order perturbation theory we may f ind energy correction
to the central-field energy result:
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Pay your attention to notation:

JJ JMjnjnMJ :, 2211=γTaking e-e interaction into account leads to a
splitting of energy levels with different J.
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Plan of lecture

From one- to two-electron ions (atoms)

Symmetry properties of the two-electron wavefunctio ns

Independent particle model (IPM)

Corrections to IPM: Screening and coupling

Central field approximation

From two- to many-electron ions (atoms)

01 July 2015

Central field approximation
(generalization to N-electron case)

01 July 2015

Generalization of the central field approximation (and, as its particular case, the
independent particle model) for the system of N electrons is rather straightforward:

where central field Hamiltonian:

and remaining (non-spherical) part is:
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By neglecting first the non-spherical part, we find solution of H0

... and may use later perturbation theory to include rest terms H`.
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Plan of lectures

• 1 15.04.2015 Preliminary Discussion / Introduction

• 2 22.04.2015 Experiments (discovery of the positron, formation of antihydrogen, ...)
• 3 29.04.2015 Experiments (Lamb shift, hyperfine structure, quasimolecules and MO spectra)
• 4 06.05.2015 Theory (from Schrödinger to Dirac equation, solutions with negative energy)
• 5 13.05.2015 Theory (bound-state solutions of Dirac equation, quantum numbers)
• 6 20.05.2015 Theory (bound-state Dirac wavefunctions, QED corrections)

• 7 27.05.2015 Experiment (photoionization, radiative recombination, ATI, HHG...)
• 8 03.06.2015 Theory (description of the light-matter interaction)
• 9 10.06.2015 Experiment (Kamiokande, cancer therapy, ….)
• 10 17.06.2015 Theory (interaction of charged particles with matter)

• 11 24.06.2015 Experiment (Auger decay, dielectronic recombination, double ionization)
• 12 01.06.2015 Theory (interelectronic interactions, extension of Dirac (and Schrödinger) theory for the

description of many-electron systems, approximate methods)

• 13 08.07.2015 Experiment (Atomic physics PNC experiments (Cs,...), heavy ion PV research)


