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Many-electron ions

(Independent particle model and central field approximation)




[0 From one- to two-electron ions (atoms) ]

+ Symmetry properties of the two-electron wavefunctio ns
+ Independent particle model (IPM)

+ Corrections to IPM: Screening and coupling

+ Central field approximation

+ From two- to many-electron ions (atoms)

Erwin Schrodinger Paul Dirac
H-like ion
. (one electron)
@ Schrédinger equation (a.u.): ® Dirac equation (a.u.):
— i 2
(‘ED“V(r)Jw(r) =Ey() (Fica @ +V (r)+cia, )y (r)
2 =Ey(r)
@ (Bound-state) energy values: ® (Bound-state) energy values:
2 2
E =- Z Enj =c?/ |1+ Za
"7 2n? n-j+1/2|+/(j +1/2° - (Zay’
#® Wavefunctions: ® Wavefunctions: ~
_ v (@ v (r)_l gn(E)j(r)Qljmj ()
Yam(1) =Ry ()Y (6,9) n(&)lim; F LT Foeys (D Qe )




Solutions for one-electron ions

Erwin Schrodinger Paul Dirac
@ Q H-like ion @
@ (one electron)

@ Schrédinger equation (a.u.): @ Dirac equation (a.u.):
— 1 2
(—E 02 /000 bt = Easte (~ico M +V (r)+ca, )y (r)
2
Note: both energies and wavefunctions are
@ (Bound-st known for one-electron case analytically!
2
E =- < E, =c?/ |1+ - L_u
" on? n=|j+1/2|+/(j +1/2)° - (Za)’
@ Wavefunctions: ® Wavefunctions: R
B v (6 w (I’)—E gn(s)j(r)QumJ (r)
Wam(r) =Ry ()Y (6.9) n(e)lim, i Fogey (1) Qg (F)
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From one- to many-electron ions

(particular case of helium-like systems)

x ‘
@ (Stationary) Dirac equation for the two-electron io ns is given by:

(;th +v12jw(rl,r2)= EW(r,,r,)

@ Here the one-particle Hamiltonians (in  atomic units ): o€

7 I,

h, = —ice (I, - —+c’a,
k e® "

@ And the electron-electron interaction term: 2

1 M

V12 -
12
nucleus

(for the moment we don’t consider relativistic corr __ections to Coulomb interaction) (point-like)
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@ Our task now is to find solution for the two-electr on Dirac equation: g

z h, +V,, lP(rl,rz)z ElP(rl,rz)

k=12

@ [n other words: we have to find energy Ehdwa  vefunction WY (rl, r2)

Bad news: analytical solutions for this equation do not exist!

We have to apply approximate methods!

@ First, let us discuss the general properties of the solutions.

+ From one- to two-electron ions (atoms)

N

[t Symmetry properties of the two-electron wavefunctio ns

+ Independent particle model (IPM)
+ Corrections to IPM: Screening and coupling
+ Central field approximation

+ From two- to many-electron ions (atoms)




Few-electron ions contain a number of electrons which are identical!

@ The Hamiltonian, therefore, must be symmetric with respect to any interchange
of the spin and space coordinates of the particle.

@ Thus an interchange operator commutes with the Hamiltonian
[Plz’ H ] =0

@ As aresult, solutions of Dirac equation are - at the same time — eigenfunctions
of permutation operator:

PoW(rr,)=w(r,r)=eW(r,r,)
® Howtofind eigenvalues &2 P2W(r,r,)=P,(e W (r,r,))=e2¥(r,r,)

® Since two successive interchanges shall bring the system ba ck to the original
configuration: e=+1

Symmetric wavefunction ( £=1) % Antisymmetric wavefunction ( g=-1)

W(r,r)=W(r.r,)

@ To our present knowledge: all systems of identical particle s in nature could be

described by either totally symmetric or totally asymmetri ¢ wavefunctions.
Bosons Fermions
(particles with zero or integer spin) (particles with half-integer spin)
W(r,,r)=w(r,r,) W(r,r)=-w(,.r,)
——
Bosons and fermions satisfy different kinds of stat istics!

(Statistics depends on spin!)

# Let us briefly remember two types of statistics!




Bose-Einstein statistics

(just few words)

@ To our present knowledge: all systems of identical particle s in nature could be
described by either totally symmetric or totally asymmetri ¢ wavefunctions.

The Bose-Einstein distribution describes the

statistical behavior of integer spin particles
Bosons
{ ) - - . } (bosons).
(particles with zero or integer spin)
_ 1
LIJ("21"1)_4,("1!"2) n(E) o

Carriers of interaction ( y, W, Z, g), complex
particles with total spin J =0,1,2...

/ AeE/kT_l

Average population number

2 D velocity distributions

At low temperatures, an unlimited number of
bosons can collect into the same energy state, a
phenomenon called "condensation".

of Colorado, Boulder

JILA, University

Picture from:
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Fermi-Dirac statistics

(just few words)

@ To our present knowledge: all systems of identical particle s in nature could be
described by either totally symmetric or totally asymmetri ¢ wavefunctions.

The Fermi-Dirac distribution applies to [ il Fgr:’lller:S ; ]
fermions, particles with half-integer spin {ariclewit Dolbintener ooy
which must obey the Pauli exclusion

principle. () (r2 , rl) =-y (rl’ r2)
n( E) = ; Leptons, quarks, complex particles with
€ (E-Eg)/KT + 1 total spin J=1/2, 3/2, ...

ST ] Pauli exclusion principle!

¥=u/100

0.8 — . | %

Wolfgang Pauli
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Symmetrization postulate

@ To our present knowledge: all systems of identical particle s in nature could be
described by either totally symmetric or totally asymmetri ¢ wavefunctions.
Bosons Fermions
(particles with zero or integer spin) (particles with half-integer spin)
W(r,n)=w.r,) W(r,n)=-w(ur,)
Carriers of interaction ( y, W, Z, g), complex Leptons, quarks, complex particles with
particles with total spin J =0,1,2... total spin J=1/2, 32, ...

2 D velocity distributions

Pauli exclusion principle!

Wolfgang Pauli
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Standard Model of

FUNDAMENTAL PARTICLES AND INTERACTIONS,

FERMIONS 5 iommeers BOSONS_“i".5/%5 ..

Leptons spin =12 Quarks spin =12 Structure withil Unified Electroweax spin = 1 Strong (color) spin = 1

A i Mass  Electric Mass  Electric
Mass_ Electric ‘Electric. Name Name
FHOCE e (Be e, | Bdcone Gevict | charge

PROPERTIES OF THE INTERACTIONS _
Mesons o

— St vt are bosonic s
Gravitational Ther e ot 14 7o o s,
Fundamental i

Fiavor Eleric Charge | Color Charge symbl wama Qe S Mo, s
Quarks, Loprons | lectcly charged_| Quaks, Gluens |
wt w- 70 | ¥ | Gluons

st e
fortwo u quarks at:

far two protons in nucleus

Note: matter constituents are fermions
while force carriers are bosons!

http://CPEPweb.org
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Back to the two-electron wavefunction

@ To our present knowledge: all systems of identical particle s in nature could be
described by either totally symmetric or totally asymmetri ¢ wavefunctions.

[ Fermions ]

(particles with half-integer spin)

How to build wavefunction
of helium-like ion?

LIJ(rz, rl): _W(rl’ rz)

Leptons, quarks, complex particles with
total spin J=1/2, 3/2, ... : (
Pauli exclusion principle!

Wolfgang Pauli

z hy +V12Jw(r1,r2): EW (rl’rZ)

k=12

e Let us build the two-electron wavefunction
in terms of one-electron ones:

l'p(rl’rz):wa(rl)l//b(rz)

& Good! But does not fit to Pauli principle!
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Two-electron wavefunction

(symmetry structure)

@ After discussing symmetry properties of the system of indis tinguishable
electrons (fermions) we may write down the two-electron wav efunction:

w(rl,r2)=(wa(rl)wb<r2) ~ o ()W, (1,))

normalization constant

@ |tis very convenient to express this function in terms of Sla ter determinant:

wa(rl) l//b(rl)
wa(rz) wb(rz)

W(r,.r,)= %

® (It is straightforward later to extend this expression for
describing 3-, 4- ... electron systems.)

Important question: what are the John C. Slater
one-electron functions here?
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Two-electron wavefunction

(symmetry structure)
@ After discussing symmetry properties of the system of indis tinguishable

7/Please, note: by using Slater determinantsitis st  raightforward
to construct N-electron antisymmetrized wavefunctio n:

wa(r) () ()
1 wa(rZ) wb(rZ) wc(rz)
qJ(rvrz!---):mwa(Q) l//b(fs) l/fc(fs)

\

® (It is straightforward later to extend this expression for
describing 3-, 4- ... electron systems.)

Important question: what are the John C. Slater
one-electron functions here?

01 July 2015

NLW T ] Wylls]]

Plan of lecture

+ From one- to two-electron ions (atoms)

+ Symmetry properties of the two-electron wavefunctio ns

[i Independent particle model (IPM) ]

+ Corrections to IPM: Screening and coupling
+ Central field approximation

+ From two- to many-electron ions (atoms)
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Independent particle model

® Simple, but rather efficient approximation is just to take h ydrogenic orbitals as
one-particle wave functions:

wa(rl) [//b(rl)
wa(rz) [//b(rz)

1

Y. (r)=¢,,,. ()
llJ(rl’rz)z ﬁ

= Yo(1) =Y, (1)

solutions of Dirac (Schrodinger) equation

® The wavefunction in IPM is solution of two-electron Dirac eq uation while
neglecting electron-electron interaction:

[k:zmﬁk@”’(Wz):w(mrz) ;’i/.e

01 July 2015

12
e®

IPM can be applied for high-Z ions since the electron- 0 5
electron interaction scales like 1/Z when compared Z r,
with electron nucleus interaction. 0 I’_

1

nucleus '
(point-like)

Independent particle model

(spectroscopy of levels)
® The wavefunction in IPM

iw”ajalla(rl) wnbjhﬂb(rl)

LIJ , =
(rl r2) \/E‘//naja,ua(rz) Yrgions (72)

@ s solution of two-electron Dirac equation while neglectin g electron-electron
interaction:

Z ﬁkw(rl’rz): Ew(rl’rz)
k=12

@ The energy of the (two-electron) ion: E= Enaja + Enbjb

¢ Within the Independent Particle Model the total
|::> energy of the system is entirely determined by the
electron configuration!!!

For example, one may say that He-like ion can be in  the states: 1S7,,1S,,,2S,/5:2S;,,2S/2---

01 July 2015
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2s,, + “free” electron continuum
]
> 1s,,, + “free” electron continuum 25,,,2 P35
o =g
g m 25]32 251]22 pl/z
w
E= E" J Enbjb —_— —_—
! 1,35,
1sy,2s), — 15,,2Py,
JS1]22 p]JZ
1s),
S~ _ N
g ~
singly-excited states doubly-excited states

uation while

@& The wavefunction in IPM is solution of two-electron Dirac eq
neglecting electron-electron interaction:
( Z h, ®JLP (rl' rz) =EY (r11 rz)
k=12
® The energy of the (two-electron) ion: E= En i + Eno i
|:> Example: ground-state energy of He-like ions
o€ lon IPM energy | “exact”
energy
H- -1 -0.528
He -4 -2.904
C+* -36 -32.41
nucleus 1% oo+ -9722 -9605
(point-like)
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® The wavefunction in IPM is solution of two-electron Dirac eq uation while
neglecting electron-electron interaction:
(. &)r P
Not bad (especially for heavy He-like ions)! Butca n
® The we improve our simple model?
|:> Example: ground-state energy of He-like ions

o€ lon IPM energy | “exact”

energy
H- -1 -0.528
Il 5 He -4 -2.904

r
C+* -36 -32.41
nucleu.s 1% Yoo+ -9722 -9605
(point-like)

+ From one- to two-electron ions (atoms)

+ Symmetry properties of the two-electron wavefunctio ns

+ Independent particle model (IPM)

[0 Corrections to IPM: Screening and coupling ]

+ Central field approximation

+ From two- to many-electron ions (atoms)
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Screening of nucleus

® In helium-like ions electrons screen nucleus from

each other!

® Each electron already does not “see” the nuclear
charge Z but some smaller charge = Z;.

@ How to estimate “effective charge” Z  4?

@ We may consider nuclear charge as a parameter and apply varia  tional principle:

efv] - M) =—> &Wv]=0

(wlw)

@ By varying nuclear charge Z it was found (for non-relativistic systems):

_Z_

“effective Charg_ \hamf’ of the nucleu

01 July 2015

Independent particle model

(taking screening into account)

@ After taking screening into account, we obtain the wavefunc tion in IPM:

[//najaya(rl) wnbjhﬂb(rl)
wnajaﬂa(rz) w”njbﬂb(rz)

c equation:

W(r,r,)= %

@ But where one-electron wavefunctions are solutions of Dira

[_ ica I, — L czath/jnaKa#a (r) = Enajawnakaya (re)
K
@ lon IPM energy | “exact”
We end up with new energies: 1 % v Withozzf;g ene:)g)5/28
= B (Zan ) * B, (Zar) He -2..84 -2:904
[ Are further improvements possible? I CH -32.36 -32.41
0.4 % | oo+ -9645 -9605
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Coupling of angular momenta

LP(I‘ r )=i wnua (rl) w"@ﬂb (rl) _ Electrons are characterized by their
vh2 & wna@,ua(rz) wnbb (rz) total angular momenta (and parities).

@ Atom (ion) is also characterized by the total angular moment umJ.

® To find this momentum we need to  couple together individual electron momenta.

S

. . (/jn .M. (rl) ‘/jn inth (rl)
Yol )= NI IM et
o Fure) ;Z%(J Ha ot J)Wnajaua () @i, (12)

Clebsch-Gordan coefficients Please, remind yourself: we
coupled already orbital momentum
and spin s to the total momentum .

01 July 2015

Normalization of many-electron wavefunctions

(coupled basis)

A In contrast to “uncoupled” basis it is not so strai ghtforward now with normalization!

@ We wish now to find normalization constant N for the wavefunction:

. . wn Jald: (rl) wn Jol (rl)
LP r ,r - N A \]M alaMa bIbHb
M, ( 1 2) Dﬂé‘g(] H, ]b:ub| J ) Wi () Wi (1)

® By assuming “standard” normalization condition for the bou nd-state wavefunction:

<JM J | JM J> = J.q{:wlJ (I’l, "2)LPJMJ (I’l, I’z)dl‘ldl’z

® We obtain (by using properties of Clebsch-Gordan coefficie nts):

1 il e o
N s if n, #n, or/andj, # j, N =5 if n, =n,andj, = j,
01 July 2015

14



2s,, + “free” electron continuum
<
- 1s,,, + “free” electron continuum 25,,2P,, W) =12
& >
w
ESEwsRE. h
Nala Ny Jb o —
5, %,:J=01
—_— 2 J=12
5,25, =01 15,,2p;,
e — y,2p, J=01
Note degeneracy in )
fotal angular momentum  J.[| 1Si2:9=0
— _/ — _/
~ ~
doubly-excited states

singly-excited states

® We have built two-electron wavefunction within the framewo rk _of
9

Independent Particle Model:

. . Wn‘ 1(r) wnb‘“(r)
qJJMJ (r15 r2): N [E(Ja#a Jb#leMJ)¢, a?aﬁa(r:) w j ¢ (ri)
N Jaka My InHy

Hathp

® But! Within the IPM individual angular momenta are still goo d quantum
numbers (since we “switched-off” interelectronic interac tion).

® However, there are two important arguments  pro making coupling here:

IPM wavefunction is good starting point for building more “advanced”

1)
wavefunctions.
g the physics of

2) “IPM with coupling” is very often enough for understandin
eavy ions.

various collision processes and basics of the structure of h
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® We have built two-electron wavefunction within
the framework of Independent Particle Model: )

. . wn i (rl) WH ot (rl)
LlJ r’r :N Jaﬂajﬂ\]M alata b ibHh
IM ( 1 2) %( b bl J ) Wnajapa (I—Z) l/jnnjb,uh (rz)

‘Abstand vom Kemn

® This simple model takes into account:

v Pauli principle (antisymmetrization)
v" Momentum coupling
v Part of e-e interaction effects (screening)

Again: IPM is rather good approximation for analyzing many processes involving heavy ions.

But: electrons do not interact with each other directly!

+ From one- to two-electron ions (atoms)

+ Symmetry properties of the two-electron wavefunctio ns
+ Independent particle model (IPM)

+ Corrections to IPM: Screening and coupling

[0 Central field approximation ]

+ From two- to many-electron ions (atoms)
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® Letus again start from the two-electron Dirac equation:

{Z[—ica[ﬂ]k—r£+czaoJ+i}lJ(rl,rz)=Elp(rllrz) ;

k k I'12

® And re-write it in the form:

central potential!

[2 (~icam, +v<rk‘){cza0)+[i+z (—V(rk) -rZ_kmw(rl,rz): EW(r,.r,)

NS Q12 k
~— ~—
- N
Hy H
new “unperturbed” Hamiltonian perturbation
(still sum of one-electron Hamiltonians) (chosen to be small)

|:> By neglecting for the moment perturbation term H' we may obtain solutions
in the central field approximation:

H\ OLIJ (rl’ rZ) = [E67 (rl' rZ)

@ Solutions of the new central field Hamiltonian:

Ho =) (~icam, +V (r,) +c%a,)
k
® Read again as:

o Ui, (1) Ui, ()
W (1) = NOY (jabty Gkt IM, )| Mol 12 "t

s Up i (12) Ui, (1)

ﬁ Please, note that u(r) functions are not anymore solutions of Dirac- \
Coulomb equation but:

(— iCO! [ +V (rk) . Czaﬂ)una;(a,ua (rk) = EU o (rk)

@ Since potential V(r) is central; 1 lj (r)_Ql, (f)
nK im;

unljmj (r) 3 F [ an (r) Q"W‘i (f\)

:> But radial components (in general case) have tobe  found numerically!
K (Depending on the particular form of central potent ial v(r)) /
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Finding solutions for central field approximation

+ Please, note that u(r) functions are not anymore solutions of Dirac-Coulomb
equation but:

(_ ica DD +V (rk) + Czao)unakapa (rk) = EU NaK oo (rk)

# Since potential V(r) is central:

u (r) _ 1 gn/((r)glljmj (f\)
i - r I an(r)Ql'jmj (f)
+ Radial components can be found by numerical solution of the system of coupled
equations: d F (r) p
(* _T an(r)J = _(E _V(r) _Cz)gnk(r)

(%*?mm)=(E—V<r>+cz)f~m<f>

Indeed, particular form of the radial components de pends on the choice of potential.

01 July 2015

Choice of effective potential

® Indeed, there are many ways to choose effective (central) po tential in:

Ho =) (—iCa [, +V(rk)+c2a0)
k
_ Zg (1)

® Quite often, people make use ofthe V(1) =
I

S

Z
7z r. - 0
iy ¥
x eﬂ(k) {Z_l rk—>°°

L

r

I:> How to find “effective” nuclear charge?

One may, for example, apply Poisson's equation: AV = -4
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® We have “found” solutions of the new central field Hamiltoni an:

Ho=> (— ica M, +V (r,)+ czao)
k
® Which can be given in terms of Slater determinants:

unaja:ua (rl) unnjh/"h (rl)

qJJMJ (rl, r2)= N DZ(ja/Ja Jblub|JMJ) u. . (rz) u . (rz)
NaJalla Ny JoHo

Halp

® In order to find solutions of “exact” Hamiltonian:

> (—iCa m, +V(r,) +cza0)+(ri+z {—V(rk) —5] W(r,r,)=E¥(r,r,)
12 k ')

N VAN N
~ T
Ho H'
® For relativistic ions (for which relativistic interaction s are stronger than
interelectronic ones) we may apply perturbation theory in o rder to take H' into
account!

® By making use of the first-order perturbation theory we may f ind energy correction
to the central-field energy result:

E'=(yIM,[H|y IM, )= [W, (rr,) H' Wy, (11, drdr,

Pay your attention to notation;

A Taking e-e interaction into account leads to a |}/J M J > =| n1j1- n2j2 . JMJ>

splitting of energy levels with different J.

1s,, + “free” electron continuum 1s,,, + “free” electron continuum

Energy
Energy

5,29, =12
B2, 1=01 >
— — 5, 2P, 1 =01

155,:3=0 1s2,:3=0




¢+ From one- to two-electron ions (atoms)

+ Symmetry properties of the two-electron wavefunctio ns
+ Independent particle model (IPM)

+ Corrections to IPM: Screening and coupling

+ Central field approximation

[d» From two- to many-electron ions (atoms) ]

® Generalization of the central field approximation (and, as its particular case, the
independent particle model) for the system of N electrons is rather straightforward:

[Z (‘ ica (I, - ri+ cZaOJ +y é}“(fu fyoe) = EW(r,,15,.)

k K k<i

@ where central field Hamiltonian: H o= Z (— ica M, +V (r,)+ Czao)
k
. ) . ~, 1 VA
® and remaining (non-spherical) part is: H'= Z ——Z =+V(r)
kai e % Tk

:> By neglecting first the non-spherical part, we find solution of H,
... and may use later perturbation theory to include rest terms H'.
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